Bis(trifluoromethyl) Trioxide

for N_2F_4 . Since all four methyl torsions appear to fall at about the same frequency, it is possible to calculate an "average" barrier assuming negligible top-top coupling. On the basis of the Mathieu equation, a periodic methyl torsional barrier of 3.4 kcal/mol is calculated from the 238-cm⁻¹ band. This value is in excellent agreement with the 3.3-kcal/mol barrier obtained for the methyl torsional barrier in 1,2-dimethylhydrazine¹⁵ but considerably lower than the 4.69kcal/mol value for 1,1-dimethylhydrazine¹⁶ although the latter value was for the solid state. In general, the barrier increases significantly with the addition of more methyl groups on the same nitrogen (see Table II). This trend does not appear to hold for this tetramethyl-substituted hydrazine. A possible explanation for this seemingly low barrier might be given in terms of the CNN angle which is expected to be significantly larger for this substituted hydrazine compared to the similar angle in the disubstituted hydrazines because of steric factors.

Although several substituted diphosphine compounds have been found to crystallize with the molecules in the trans configuration,^{5,17,18} a similar result does not occur for the hydrazines. For example, tetramethyldiphosphine is approximately 60% gauche isomer at room temperature, but in the crystal the molecule has the trans structure.¹⁷ From the

(15) J. R. Durig and W. C. Harris, J. Chem. Phys., 55, 1735 (1971).

(16) J. R. Durig and W. C. Harris, J. Chem. Phys., 51, 4456

(1969).
(17) J. R. Durig and J. S. DiYorio, *Inorg. Chem.*, 8, 2796 (1969).
(18) Y. C. Yeung and J. Waser, *J. Phys. Chem.*, 60, 539 (1956).

Table II. Some Barriers to Internal Rotation about C-N Bonds

Molecule	Barrier, kcal/mol	Ref	Molecule	Barrier, kcal/mol	Ref
CH ₃ NH ₂	1.98	a	(CH ₃), NNH ₂	4.69 (solid)	е
(CH ₃) ₂ NH	3.28	Ъ	(CH,),N	4.41	f
CH,NHNH,	3.67	С	(CH ₃), NN-	3.3	g
CH ₃ NHNHCH ₃	3.34	d	(CH ₃) ₂		0

^a D. R. Lide, Jr., and D. L. Mann, J. Chem. Phys., 27, 343 (1957). ^b K. D. Moller, A. R. DeMeo, D. R. Smith, and L. H. London, J. Chem. Phys., 47, 2609 (1967). c J. R. Durig, W. C. Harris, and D. W. Wertz, J. Chem. Phys., 50, 1449 (1969); R. P. Lattimer and M. D. Harmony, J. Amer. Chem. Soc., 73, 1400 (1971). d Reference 15. e Reference 16. f D. R. Lide, Jr., and D. E. Mann, J. Chem. Phys., 28, 1107 (1957). g This work.

one to one correspondence between the infrared and Raman frequencies in the solid state, it is quite clear that this hydrazine molecule retains the C_2 configuration in the solid. The relative energies for the trans and gauche isomers of substituted hydrazines appear to be considerably larger than the corresponding quantities for the diphosphines, since only tetrafluorohydrazine has been found to have an appreciable concentration of the trans isomer at room temperature.

Registry No. $(CH_3)_2NN(CH_3)_2$, 6415-12-9.

Acknowledgment. R. W. M. and J. R. D. acknowledge the financial support of this work by the National Aeronautics and Space Administration by Grant NGR-41-002-003. W. C. H. acknowledges support provided this research by the donors of the Petroleum Research Fund, administered by the American Chemical Society.

Contribution from the Departments of Chemistry, University of South Carolina, Columbia, South Carolina 29208, and Kansas State University, Manhattan, Kansas 66506

Vibrational Spectrum of Bis(trifluoromethyl) Trioxide

J. D. WITT, J. R. DURIG,* D. DesMARTEAU, and R. M. HAMMAKER

Received September 11, 1972

The infrared spectrum of solid $(CF_1)_2O_3$ and the Raman spectrum of gas, liquid, and solid $(CF_3)_2O_3$ have been measured in the fundamental region. A new vibrational assignment is proposed in which the symmetric O-O stretch of the triatomic O_3 bridge is located at 875 cm⁻¹, considerably higher than previously reported. This value is very similar to the value of 890 cm^{-1} for the O-O stretch in CF₃OOCF₃ and indicates a similarity in the O-O bond order in the two molecules. The high intensity of the 875-cm⁻¹ band demonstrates the usefulness of Raman spectroscopy in the detection of O-O stretching vibrations.

Introduction

The infrared spectrum of gaseous CF3OOOCF3 has recently been reported.¹ The spectrum was assigned on the assumption that the molecule possessed only trivial C_1 symmetry. In view of the surprising stability of this substance, the vibrational frequencies of the trioxide skeleton are of particular interest. The symmetric and antisymmetric O-O-O stretching frequencies were assigned¹ to strong infrared bands at 773 and 897 cm^{-1} , respectively.

More recently, the structures of $(CF_3)_2O_1$, $(CF_3)_2O_2$, and

* Address correspondence to this author at the University of South Carolina.

(1) R. P. Hirschmann, W. B. Fox, and L. R. Anderson, Spectrochim. Acta, Part A, 25, 811 (1969).

 $(CF_3)_2O_3$ were investigated by electron diffraction.² An O-O bond length of about 1.5 Å and an O-O-O of 120° was found for the trioxide. This bond length corresponds to an O-O single bond as found, for example, in hydrogen peroxide, HOOH. Durig and Wertz³ have examined the infrared and Raman spectra of CF₃OOCF₃. They assigned the strongest Raman band in the spectrum at 886 cm⁻¹ to the O-O stretching vibration. Because of the large polarizability change associated with symmetric motions of this type, Raman spectroscopy is particularly well

(2) S. H. Bauer, Abstracts, 3rd Austin Symposium on Gas Phase Molecular Structure, March 1970. (3) J. R. Durig and D. W. Wertz, J. Mol. Spectrosc., 25, 467 (1968).

suited for studying substances containing the O-O linkage. Therefore, we felt that it would be of considerable interest to examine the Raman spectrum of CF_3OOOCF_3 in order to establish better the vibrational assignment for the skeletal stretching and bending motions. The results of this investigation along with some partially completed results on $(CF_3)_2O$ are presented in this paper.

Experimental Section

The sample of $(CF_3)_2O_3$ used in this study was prepared by a modification of a method described in literature.⁴ Excess oxygen difluoride and cesium trifluoromethoxide⁵ were allowed to react in a 75-ml stainless steel vessel at 40° for 2 days. The $(CF_3)_2O_3$ formed was purified by collecting it in a -125° trap while pumping on the reactor as it warmed slowly from -196°.

The sample of $(CF_3)_2O$ used in this study was supplied by Dr. L. R. Anderson of Allied Chemical Corp. This sample contained considerable amounts of COF₂ which was removed by condensation of the sample on wet KOH.

The infrared spectrum of solid $(CF_3)_2O_3$ was measured at liquid nitrogen temperature on a Perkin-Elmer Model 621 spectrophotometer using a cold cell of conventional design. The Raman spectrum of liquid $(CF_3)_2O_3$ sealed in a capillary tube was recorded with a Cary Model 82 Raman spectrometer.⁶ The spectrum of the gas was obtained with the sample contained in a standard Cary multipass gas cell. Low-temperature studies were carried out using a cold cell similar to the one described by Harney and Miller.⁷

Results and Discussion

In the previously published analysis of the vibrational spectrum of $(CF_3)_2O_3$, only trivial C_1 symmetry was assumed. However, the electron diffraction data can be interpreted in terms of C_2 symmetry. Moreover, our study reveals a number of depolarized Raman lines which is not consistent with C_1 symmetry. Even though one sometimes observes measured ratios for symmetric modes which are indistinguishable from the theoretical value expected for a depolarized band, the fact that nearly half of the observed Raman lines are depolarized favors the presence of a symmetry element. Therefore, we have chosen to interpret our data in terms of C_2 symmetry. The molecular vibrations are thus described in terms of in-phase and out-of-phase motions of two CF₃O groups. This approach has the advantage of allowing one to associate strong, polarized Raman bands with in-phase motions, whereas strong infrared bands are associated with the out-of-phase motions. (See Table I.)

A survey scan of the mid-infrared spectrum of gaseous CF_3OOOCF_3 was identical with that published by Hirschmann, *et al.*¹ Therefore, in our discussion of the vibrational assignments we shall use the infrared frequencies previously reported. The six C-F stretching motions have been assigned¹ to infrared bands at 1290, 1252, and 1169 cm⁻¹. In the Raman spectrum of the solid shown in Figure 1B, six bands were observed which are assignable as C-F stretching modes.

There are two motions involving symmetric and antisymmetric C-O stretches. The symmetric C-O stretch should be intense in the Raman spectrum, and we find a polarized band of medium intensity at 930 cm^{-1} which has a medium-intensity infrared counterpart. The antisymmetric C-O stretch is expected to be intense in the infrared spectrum and would normally occur at a higher frequency than the corresponding symmetric mode. Hirschmann, *et al.*,¹ assigned a medium-intensity infrared band at 997 cm⁻¹ as

(4) L. R. Anderson and W. B. Fox, J. Amer. Chem. Soc., 89, 4313 (1967).

(5) D. D. DesMarteau, Inorg. Chem., 9, 2179 (1970).

(6) The Raman spectrophotometer was purchased with funds from National Science Foundation Grant GP-28068.
(7) F. A. Miller and B. M. Harney, *Appl. Spectrosc.*, 24, 291 (1970).

Figure 1. Raman spectra of CF_3OOOCF_3 with 5145-A excitation: A, spectrum of liquid at room temperature; B, spectrum of solid at -150° .

Figure 2. Mid-infrared spectrum of gaseous $(CF_3)_2O$.

the antisymmetric C-O stretch. However, the only strong infrared band in the region occurs at 897 cm⁻¹, and we assign the band as the antisymmetric stretch. This is a rather low frequency since this motion occurs at 1065 cm^{-1} in CF_3OOCF_3 .³ In discussing the antisymmetric C-O stretch it is also useful to consider the molecule bis(trifluoromethyl) ether, $(CF_3)_2O$. A mid-infrared spectrum of this substance is shown in Figure 2 and Table II. The type "A" band centered at 970 cm^{-1} can be confidently assigned as the antisymmetric C-O stretch on the basis of its relative intensity, band contour, and measured P-R separation.⁸ Due to a limited amount of sample, it was not possible to obtain the Raman spectrum of this substance. Therefore, assignment of the symmetric C-O stretch in $(CF_3)_2O$ is still uncertain. A comparison of the C-O bond lengths and C-O stretching assignments for $(CF_3)_2O_n$ (n = 1, 2, 3) is presented in Table III. There seems to be some correlation between the increasing C-O bond length and decreasing C-O stretching frequency, although $\nu_{antisym}$ is out of line for CF_3OOCF_3 . A possible difficulty in attempting to make such a comparison is that in $(CF_3)_2O$, a COC angle bend may be involved with a C-O stretch, whereas the C-O stretch may interact with a COO angle bend in the peroxide and trioxide.

The most interesting aspect of the vibrational assignment

⁽⁸⁾ The following parameters were assumed for $(CF_3)_2O$: C-F = 1.32 Å, C-O = 1.36 Å, C-O-C = 124°, and tetrahedral angles in the CF₃ groups. These parameters lead to a calculated P-R separation of 10.6 cm⁻¹ for a type A band.

Table I. Infrared and Raman Frequencies (cm⁻¹) of Bis(trifluoromethyl) Trioxide^a

	Infra	red				Ram	nan			
	Rel		Rel			Rel			Rel	-
Gas	intens	Solid	intens	Gas	Liquid	intens	Polarizn	Solid	intens	Assignment
								1285	w	
1290	vs			1293		w		1275	w	
					~1285 b			1270	w	
1252	vs			1250		w?		1255	w	$\nu_1 - \nu_3$, $\nu_{15} - \nu_{17}$, C-F str
								1221	w	
		1200	b	1230	~1220 b	w?		1214	w	
								1210	w	
1185	sh									
1169	vs									
1067	m									$\nu_{18} + \nu_{12} = 1071$
997	m									
								973	vw	
								950	vw	
929	m	924		930	927	m	р	926	S	ν_4 , sym C–O str
897	s .	894	m					894	w	$v_{\rm res}$ antisym C-O str
077	3	888	sh					887		
				875	873	vs	р	873	vvs	$\nu_{\rm s}$, sym $O_{\rm 3}$ str
								863	w	
1810?	w?				·					
		779	w	7 71	76619		4	750		
113	S	761		//1	/05 0:	m	ap	/ 39		
766	-1	750						750	ш, б	ν_{19} , antisym O_3 , str
100	sn	/50	W		609		dn	600		
699	m	690	111	~090	680	w	up dn	685	m	ν_{20} , sym CF ₃ def
660	-	656	w	661	660	m	up n	650	- 111 E	" sym CE def
630	m?	050	111	001	000	111	Р	059	3	ν_6 , sym er ₃ der
030	111;	613	117		610	m	dn	612	m	v antisym CF def
		593	w	593	593	m	n	592	m	v_{21} , antisym CF, def
577	s	579	m	577	578	m	dn	578	s	v_{11} antisym CF. def
525	vw	523	m	521	523	m	p p	525	m	ν_{e_1} antisym CF, def
474	m	475	m		473	w. b	dp	475	m	ν_{22} , CF ₂ rock
		433	vw				•	432	vw	40 ° 0
		417	vw	415	414	m	р	415	m	ν_9, ν_{10}, CF_3 rock
318	m	317	m				-	318	vw	ν_{24} , CF ₃ rock
286	w			286	288	vs	р	288	vs	ν_{11} , O ₃ skeletal bend
174	w			173	175	S	p	177	S	ν_{12} , C-O-O skeletal bend
124	w			115	115	m	dp	120		ν_{25} , C-O-O skeletal bend
								84	w	· · · ·
								73	w	ν_{13}, ν_{14} CE and skalatel tersions
					~68 b	w		59	W	ν_{26}, ν_{27} (Cr ₃ and sceletar torsions
								~45	w	
								37	w	
								33	w	
								27	w	

^a Abbreviations used: s, strong; m, medium; v, very; w, weak; sh, shoulder; b, broad; p, polarized; dp, depolarized. ^b The vibrational assignment is made under C_2 symmetry. $\nu_1 - \nu_{14}$ are in-phase A species vibrations, whereas $\nu_{15} - \nu_{27}$ are out-of-phase B species motions.

Table II.	Mid-Infrared Spectrum of Bis(trifluoromethyl) Ether
with Sugg	ested Vibrational Assignments ^a

Freq, cm ⁻¹	Rel	Assignment
1328	vvs	CF ₃ str
1255	vvs	CF ₃ str
1178 1173	vvs	CF ₃ str
1102	w	576 + 527 = 1107
1061	w	$527 \times 2 = 1054$
999	w	
975.0 R		
970.0 Q	s, type A	Antisym C–O str
964.4 P		
946	w	
700.0 R		
695.0 Q	m, type A	Out-of-phase sym CF ₃ def
689.4 P		
579	w	Antisym CF, def
573		
527	W	Antisym CF ₃ def

^a Abbreviations used: vvs, very, very strong; w, weak; s, strong; m, medium; R, Q, P, rotational structure of gas-phase band.

for $(CF_3)_2O_3$ is the group of frequencies associated with the

 Table III.
 A Comparison of the C-O Bond Distance and the C-O

 Stretching Assignments for Three CF₃O-Containing Molecules

	v_{asym} , cm ⁻¹	$v_{\rm sym},{\rm cm}^{-1}$	r _{C-O} , Å ^a	
(CF ₃) ₂ O	97 0		1.360	
(CF,),O,	1065	975	1.398	
(CF ₃) ₂ O ₃	897	929	1.407	

^a Distance taken from ref 2.

trioxide bridge. Hirschmann, et al.,¹ assigned the antisymmetric and symmetric O-O-O stretching frequencies to strong infrared bands at 897 and 773 cm⁻¹, respectively. In the Raman spectrum, these bands appear only weakly, whereas we find a very strong polarized band at 875 cm⁻¹. This latter band does not appear in the infrared spectrum. On the basis of its strong Raman intensity, the 875-cm⁻¹ band is assigned as the symmetric O-O-O stretch. The high intensity of this band indicates the usefulness of Raman spectroscopy in detecting the O-O linkage in such molecules. Melveger, et al.,⁹ have reached a similar con-

(9) A. J. Melveger, L. R. Anderson, C. T. Ratcliffe, and W. B. Fox, Appl. Spectrosc., 26, 381 (1972).

Table IV. Comparison of HF pure Rotational Spectrum with Absorptions in the Far-Infrared Spectrum of CF₃OOOCF₃

Transition $J' \leftarrow J$	Obsd freq for HF, ¹² cm ⁻¹	Obsd freq of Hirschmann, et al., ¹ cm ⁻¹	$\begin{array}{c} \text{Transition} \\ J' \leftarrow J \end{array}$	Obsd freq for HF, ¹² cm ⁻¹	Obsd freq of Hirschmann, <i>et al.</i> , ¹ cm ⁻¹	
2 ← 1	82.35	83	5 ← 4	204.50	205	
3 ← 2	122.83	124	6 ← 5	244.97	245	
4 ← 3	163.92	164	7 ← 6	284.98	285	

clusion in their Raman study of a series of peroxides. Our study also indicates the usefulness of obtaining both the infrared and Raman spectra of these type of molecules in arriving at the correct vibrational assignment, particularly for the symmetric vibrations.

Having given a reasonable assignment for the symmetric skeletal stretch, it is necessary to consider the antisymmetric skeletal stretch. This band should be strong in the infrared region, and the strongest infrared band in the spectrum (with the exception of the CF₃ stretches) occurs at 773 cm^{-1} . This band is broad and depolarized in the Raman spectrum as would be expected for an antisymmetric stretch. Moreover, it is too high in frequency to be a symmetric CF_3 deformation. Therefore, the 773-cm⁻¹ band is assigned as the antisymmetric O-O-O stretch. A possible objection to this assignment is the fact that the symmetric stretch occurs at a higher frequency than the antisymmetric stretch. However, there is precedent for this reversal in the vibrational spectrum of the simplest trioxide, ozone. In ozone,¹⁰ the symmetric O-O stretch occurs at 1110 cm⁻¹ whereas the antisymmetric stretch appears at 1043 cm⁻¹. Therefore, it does not seem unreasonable that a similar situation might occur in the $(CF_3)_2O_3$ molecule. It should be noted, however, that bond lengths in O_3 and $(CF_3)_2O_3$ are quite different, 1.28 and 1.51 Å, respectively.¹¹ The value of 1.51 Å is approximately that of an O-O single bond (as in HOOH), while the 1.28-Å value in O_3 is indicative of some double-bond character.

The vibrations between 700 and 300 cm⁻¹ can be assigned to deformations and rocking motions of the CF₃ groups. The medium-intensity infrared bond at 699 cm⁻¹ with a weak depolarized Raman counterpart is assigned as the outof-phase symmetric CF₃ deformations. In CF₃OOCF₃, the out-of-phase symmetric deformation occurs at 673 cm⁻¹, whereas, in CF₃OCF₃, this motion occurs at 695 cm⁻¹. The in-phase component is assigned to a polarized Raman band at 660 cm⁻¹. The two in-phase antisymmetric CF₃ deformations are assigned to bands at 593 and 521 cm⁻¹, whereas the out-of-phase components appear at 610 and 577 cm⁻¹. There are also four CF₃ rocking vibrations. The two inphase components, ν_9 and ν_{10} , are assigned to a polarized Raman band at 415 cm⁻¹. The out-of-phase components,

(10) K. Nakamoto, "Infrared Spectra of Inorganic and Coordination Compounds," Wiley, New York, N. Y., 1963, p 83.
(11) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry," 3rd ed, Interscience, New York, N. Y., 1972, p 410.

 ν_{23} and ν_{24} , are assigned to medium-intensity infrared bands at 474 and 318 cm⁻¹. These assignments of the CF₃ deformations and rocks are in general agreement with those of Hirschmann, *et al.*,¹ so that no detailed comparison of the assignment is necessary.

The second strongest Raman band appears at 286 cm⁻¹. This polarized band is obviously a symmetric motion, and on the basis of its intensity, we assign it as the skeletal bending motion of the O₃ bridge. The in-phase and out-of-phase F_3C -O-O bending motions are assigned to bands at 174 and 124 cm⁻¹, respectively, in agreement with Hirschmann, *et al.*¹ The higher frequency band is intense and polarized as one would expect for a symmetric motion, while the lower frequency band is broad and depolarized.

In the Raman spectrum of the liquid, we observe a broad band of uncertain polarization centered near 60 cm⁻¹. Upon solidification, we observe bands at 84, 73, 59, 45, 37, 33, and 27 cm⁻¹. Some of the bands may be due to CF₃ torsional motions. It is difficult to make any specific assignment; however, lattice vibrations could account for many of the bands, especially those below 50 cm⁻¹.

A final point of interest is the set of five lines observed by Hirschmann, et al.,¹ in the far-infrared spectrum of gaseous (CF₃)₂O₃. These lines were stated to occur with a regular spacing of 40 cm⁻¹ and were found to be extremely sharp. The authors state that no ready explanation for these lines was apparent. However, an examination of Table IV reveals excellent agreement between the lines previously reported in (CF₃)₂O₃ and the pure rotational spectrum of HF.¹² The $J = 2 \rightarrow 3$ transition of HF at 122.83 cm⁻¹ is obscured by a fundamental mode of (CF₃)₂O₃ at 124 cm⁻¹. The HF rotational spectrum has caused considerable difficulty in assigning the far-infrared spectrum of many fluorine-containing molecules.¹³

Registry No. (CF₃)₂O₃, 1718-18-9; (CF₃)₂O, 1479-49-8.

Acknowledgment. The authors (J. D. W. and J. R. D.) gratefully acknowledge the financial support given this work by the National Aeronautics and Space Administration by Grant NGL-41-002-003. We also wish to thank Dr. L. R. Anderson for providing the sample of $(CF_3)_2O$ used in this study.

(12) W. G. Rothschild, J. Opt. Soc. Amer., 54, 20 (1964).
(13) See, for example, the case of PF₅: L. C. Hoskins, J. Chem.
Phys., 42, 2631 (1964), and references therein.